Ambient temperature during pregnancy and risk of maternal hypertensive disorders : a time-to-event study in Johannesburg, South Africa

Authors & affiliation

C Part, J le Roux, Matthew Chersich, S Sawry, V Filippi, N Roos, L Fairlie, B Nakstad, J de Bont, P Ljungman, M Stafoggia, S Kovats, Stanley Lüchters, S Hajat

Abstract

Hypertensive disorders in pregnancy are a leading cause of maternal and perinatal mortality and morbidity. We evaluate the effects of ambient temperature on risk of maternal hypertensive disorders throughout pregnancy. We used birth register data for all singleton births (22-43 weeks' gestation) recorded at a tertiary-level hospital in Johannesburg, South Africa, between July 2017-June 2018. Time-to-event analysis was combined with distributed lag non-linear models to examine the effects of mean weekly temperature, from conception to birth, on risk of (i) high blood pressure, hypertension, or gestational hypertension, and (ii) pre-eclampsia, eclampsia, or HELLP (hemolysis, elevated liver enzymes, low platelets). Low and high temperatures were defined as the 5th and 95th percentiles of daily mean temperature, respectively. Of 7986 women included, 844 (10.6%) had a hypertensive disorder of which 432 (51.2%) had high blood pressure/hypertension/gestational hypertension and 412 (48.8%) had pre-eclampsia/eclampsia/HELLP. High temperature in early pregnancy was associated with an increased risk of pre-eclampsia/eclampsia/HELLP. High temperature (23 °C vs 18 °C) in the third and fourth weeks of pregnancy posed the greatest risk, with hazard ratios of 1.76 (95% CI 1.12-2.78) and 1.79 (95% CI 1.19-2.71), respectively. Whereas, high temperatures in mid-late pregnancy tended to protect against pre-eclampsia/eclampsia/HELLP. Low temperature (11°) during the third trimester (from 29 weeks' gestation) was associated with an increased risk of high blood pressure/hypertension/gestational hypertension, however the strength and statistical significance of low temperature effects were reduced with model adjustments. Our findings support the hypothesis that high temperatures in early pregnancy increase risk of severe hypertensive disorders, likely through an effect on placental development. This highlights the need for greater awareness around the impacts of moderately high temperatures in early pregnancy through targeted advice, and for increased monitoring of pregnant women who conceive during periods of hot weather.

Publication date:

2022

Staff members:

Stanley Luchters

Link to publication

Open link

Attachments

1-s2.0-S0013935122009239-main.pdf (open)