Detecting severe acute malnutrition in children under five at scale : the challenges of anthropometry to reach the missed millions

Authors & affiliation

W Hammond, AE Badawi, Hedwig Deconinck

Abstract

Objective: Severe Acute Malnutrition (SAM) interventions aim to detect and treat children at highest risk of death who benefit most from treatment. SAM services reach less than 20% of affected children worldwide, and innovative policy changes are needed to scale up services. This paper discusses anthropometry to diagnose SAM as one pathway to improve the effectiveness coverage of SAM services. Results: WHO defines SAM by either MUAC <115 mm or WHZ <−3 or the presence of nutritional oedema. Both MUAC and WHZ are proxy indicators of a clinical condition, and neither is a gold standard. Because they measure different characteristics of the same illness, MUAC and WHZ identify different SAM populations that overlap differently in different contexts across and within countries. MUAC is a better predictor of mortality and has the practical advantages of simplicity, reliability and accuracy. Using both indicators independently identifies more children and loses sensitivity to risk of death. Discussion and Conclusion: Based on current evidence and operational and policy considerations, using MUAC only for diagnosing SAM with a countryadapted cut-off could feasibly scale up SAM services and improve coverage to reach the millions of missed children. Meanwhile, continued research on the biomedical consequences and policy implications of this approach, as well as innovations such as system dynamics modeling, may contribute to the evidence.

Publication date:

2016

Staff members:

Link to publication

Open link

Attachments

andt-v3-id1030.pdf (open)

Related publications